Multivariable Analysis Lecture Notes (2024/2025)

Griffin Reimerink

Contents

	0.1	Recap of vector spaces	2		
1 Differentiation					
	1.1	Definitions	3		
	1.2	Differentiation rules	4		
	1.3	Newton method	4		
	1.4	Inverse and implicit functions	5		
	1.5	Manifolds	6		
		1.5.1 Smooth manifolds	6		
		1.5.2 Tangent spaces	6		
		1.5.3 Differentiable maps on manifolds	7		
	1.6	Taylor polynomials	7		
		1.6.1 Multiexponents and polynomials	7		
		1.6.2 Taylor polynomials	8		
		1.6.3 Quadratic forms	9		
			10		
		1.0.4 Citical points	10		
2	2 Integration				
	2.1	Definitions	11		
		2.1.1 Dyadic cubes	11		
		2.1.2 Integrable functions	11		
	2.2	Volume of sets			
		2.2.1 Pavable sets			
		2.2.2 Volume zero and integrability conditions			
		2.2.3 Measure zero			
	2.3	Integration rules			
	0	2.3.1 Fubini's theorem			
	2.4	Volume of <i>k</i> -dimensional objects			
	۷.٦	2.4.1 Volume of linear transformations			
		2.4.2 Change of coordinates			
		2.4.3 Volume of manifolds			
		2.4.5 Volume of manifolds	10		
3	Forms and orientation				
	3.1	Constant k-forms	16		
		3.1.1 Permutations	16		
		3.1.2 Elementary constant k -forms			
	3.2	Differential forms			
			18		
	3.3		18		
	3.4		20		
	3.5		20		
	5.5		21		
		3.3.1 Boundary offentation			
4 Exterior derivatives					
	4.1		22		
	4.2		23		
		4.2.1 Independence of coordinates	23		
	4.3	•	24		
			24		
		• •	_ ·		

0.1 Recap of vector spaces

Definition Vector space

A vector space V is a set of vectors that is closed under vector addition and scalar multiplication.

The vector space equipped with the addition (+) and multiplication (\cdot) operations satisfies the following rules:

- 1. There exists an element 0 in V such that 0 + u = u for all $u \in V$.
- 2. Vector addition is commutative: u + v = v + u
- 3. Vector addition is associative: u + (v + w) = (u + v) + w
- 4. For each $u \in V$, there exists $-u \in V$ such that $u + (-u) = \mathbf{0}$
- 5. For all $u \in V$, $1 \cdot u = u$
- 6. For all $a,b \in \mathbb{F}$ and all $u \in V$, $a \cdot (b \cdot u) = (ab) \cdot u$
- 7. For all $c \in \mathbb{F}$ and all $u, v \in V$, $c \cdot (u + v) = (c \cdot u) + (c \cdot v)$
- 8. For all $a,b \in \mathbb{F}$ and all $u \in V$, $(a+b) \cdot u = (a \cdot u) + (b \cdot u)$

Definition Linear transformation

A linear transformation is a map $T: V \to W$ between vector spaces satisfying

$$T(av_1 + bv_2) = aT(v_1) + bT(v_2)$$
 for all $v_1, v_2 \in V$ $a, b \in \mathbb{R}$

Definition Dimension

If a vector space V has a finite basis, then all of its bases are finite and contain the same number of elements. The number of elements in a basis of V called the **dimension** of V.

Change of basis

Let V, W be vector spaces. Let v, v' be bases of V and let w, w' be bases of W.

We denote the **change of basis matrix** from v to v' by $P_{v \to v'}$. Multiplying the representation of a vector in basis v by this matrix yields the same vector's representation in the basis v'.

The *i*-th column of this matrix is the representation in basis v of the *i*-th basis vector of v'.

Let $T:V\to W$ be a linear transformation. Then the **change of basis formula** is given by:

$$T_{v',w'} = P_{w'\to w}^{-1} T_{v,w} P_{v'\to v}$$

1 Differentiation

1.1 Definitions

Definition Partial derivative

Let $U \subseteq \mathbb{R}^n$ be open and let $\mathbf{f} = (f_1, \dots, f_m)$ be a map $U \to \mathbb{R}^m$.

The **partial derivative** of f w.r.t. the i-th variable evaluated at $a \in U$ is:

$$D_i \boldsymbol{f}(\boldsymbol{a}) := \lim_{h \to 0} \frac{\boldsymbol{f}(a_1, \dots, a_i + h, \dots, a_n) - \boldsymbol{f}(a_1, \dots, a_i, \dots, a_n))}{h} = \begin{bmatrix} D_i f_1(\boldsymbol{a}) \\ \dots \\ D_i f_m(\boldsymbol{a}) \end{bmatrix}$$

whenever such a limit exists.

Definition Jacobian matrix

Let $U\subseteq\mathbb{R}^n$ be open. The **Jacobian matrix** of $f:U\to\mathbb{R}^m$ is the $m\times n$ matrix

$$Jf(\boldsymbol{a}) := \begin{bmatrix} D_1 f_1(\boldsymbol{a}) & \dots & D_n f_1(\boldsymbol{a}) \\ \vdots & \ddots & \vdots \\ D_1 f_m(\boldsymbol{a}) & \dots & D_n f_m(\boldsymbol{a}) \end{bmatrix}$$

Definition *Derivative*

Let $U \subseteq \mathbb{R}^n$ be open and let $f: U \to \mathbb{R}^m$ be a map.

f is differentiable at $a \in U$ if there exists a linear transformation $L : \mathbb{R}^n \to \mathbb{R}^m$ such that:

$$\lim_{\boldsymbol{h}\to 0}\frac{\boldsymbol{f}(\boldsymbol{a}+\boldsymbol{h})-\boldsymbol{f}(\boldsymbol{a})-L(\boldsymbol{h})}{|\boldsymbol{h}|}=\boldsymbol{0}\in\mathbb{R}^m$$

This linear transformation L is the **derivative** of f at a, denoted by Df(a).

Theorem

If f is differentiable at a, then:

- f is continuous at a.
- ullet All partial derivatives of f at a exist.
- Jf(a) is the matrix representation of Df(a).

Definition Directional derivative

Let $U \subseteq \mathbb{R}^n$ be open and let $f: U \to \mathbb{R}^m$ be a map.

The directional derivative of ${m f}$ at ${m a} \in U$ in the direction ${m v}$ is

$$\lim_{h\to 0}\frac{\boldsymbol{f}(\boldsymbol{a}+h\boldsymbol{v})-\boldsymbol{f}(\boldsymbol{a})}{h}$$

Proposition

If $f: U \to \mathbb{R}^m$ is differentiable at $a \in U$, then all directional derivatives of f at a exist, and the directional derivative in the direction v is given by Df(a)v

Definition Function of class C^p

A function $f:U\to\mathbb{R}$ is of **class** C^p if all partial derivatives up to order p exist and are continuous on U. A function $\mathbf{f}=(f_1,\ldots,f_m)$ is of class C^p if f_1,\ldots,f_m are all of class C^p .

Theorem

Let $f: U \to \mathbb{R}^m$ be a C^1 -mapping. Then f is differentiable on U and its derivative is given by its Jacobian.

1.2 Differentiation rules

Proposition

If $f(A) = A^{-1}$ is defined om the set of invertible matrices, then $Df(A)H = -A^{-1}HA^{-1}$

Theorem

- 1. If $f: U \to \mathbb{R}^m$ is constant, then its derivative is the zero map.
- 2. If $f:U\to\mathbb{R}^m$ is linear, then it is differentiable everywhere, and its derivative at all points is f itself.
- 3. If $f_1,\ldots,f_m:U\to\mathbb{R}$ are differentiable at a, then $f=(f_1,\ldots,f_m)$ is differentiable at a with derivative

$$(Dm{f}(m{a}))m{v} = egin{bmatrix} Df_1(m{a})m{v} \ dots \ Df_m(m{a})m{v} \end{bmatrix}$$

4. If $f, g: U \to \mathbb{R}^m$ are differentiable at a, then so is f + g, with derivative

$$D(f+g)(a) = Df(a) + Dg(a)$$

5. If $f: U \to \mathbb{R}$ and $g: U \to \mathbb{R}^n$ are differentiable at a, then so is fg, with derivative

$$(D(fg)(a))v = f(a)(Dg(a))v + (Df(a)v)g(a)$$

6. If $f:U\to\mathbb{R}$ and $g:U\to\mathbb{R}^n$ are differentiable at a and $f(a)\neq 0$, then so is $\frac{g}{f}$, with derivative

$$\left(D\left(\frac{\boldsymbol{g}}{f}\right)(\boldsymbol{a})\right)\boldsymbol{v} = \frac{D\boldsymbol{g}(\boldsymbol{a}))\boldsymbol{v}}{f(\boldsymbol{a})} - \frac{((Df(\boldsymbol{a}))\boldsymbol{v})(\boldsymbol{g}(\boldsymbol{a}))}{(f(\boldsymbol{a}))^2}$$

7. If $f, g: U \to \mathbb{R}^m$ are differentiable at a, then so is $f \cdot g$, with derivative

$$(D(\boldsymbol{f} \cdot \boldsymbol{g})(\boldsymbol{a}))\boldsymbol{v} = (D\boldsymbol{f}(\boldsymbol{a}))\boldsymbol{v} \cdot \boldsymbol{g}(\boldsymbol{a}) + \boldsymbol{f}(\boldsymbol{a}) \cdot (D\boldsymbol{g}(\boldsymbol{a}))\boldsymbol{v}$$

Theorem Chain rule

Let $U\subseteq\mathbb{R}^n, V\subseteq\mathbb{R}^m$ be open, let ${m g}:U\to V$ and $f:V\to\mathbb{R}^p$ be maps, and ${m a}\in U.$

If g is differentiable at a and f is differentiable at g(a), then $f \circ g$ is differentiable at a, with derivative:

$$D(f \circ g)(a)) = (Df(g(a))) \circ (Dg(a)) = Jf(g(a))Jg(a)$$

Theorem Mean value theorem

Let $U \subseteq \mathbb{R}^n$ be open and let $f: U \to \mathbb{R}$ be differentiable.

Let the segment [a, b] (the image of $t \mapsto (1 - t)a + tb$, $0 \le t \le 1$) be contained in U.

Then there exists $oldsymbol{c} \in [oldsymbol{a}, oldsymbol{b}]$ such that

$$f(\boldsymbol{b}) - f(\boldsymbol{a}) = (Df(\boldsymbol{c}))(\boldsymbol{b} - \boldsymbol{a})$$

1.3 Newton method

Definition Newton method

Let $U \subseteq \mathbb{R}^n$ be open and let $f: U \to \mathbb{R}^m$ be differentiable on U. The equation f(x) = 0 can be solved using the **Newton method**, which starts with an initial guess x_0 , and iteratively solves the sequence of equations:

$$oldsymbol{x}_{i+1} = oldsymbol{x}_i - (Doldsymbol{f}(oldsymbol{x}_i))^{-1}oldsymbol{f}(oldsymbol{x}_i)$$
 or alternatively: $(Doldsymbol{f}(oldsymbol{x}_i))(oldsymbol{x}_{i+1} - oldsymbol{x}_i) = -oldsymbol{f}(oldsymbol{x}_i)$

Definition Frobenius norm

$$|A| = \left(\sum_{i=1}^{n} \sum_{j=1}^{m} a_{i,j}^{2}\right)^{\frac{1}{2}}$$

Definition Lipschitz condition

Let $U \subseteq \mathbb{R}^n$ be open $\boldsymbol{f}: U \to \mathbb{R}^m$ differentiable.

The derivative (Df(x)) satisfies a **Lipschitz condition** on $V \subseteq U$ with **Lipschitz ratio** M if:

$$|(Df(x)) - (Df(y))| \le M|x - y|$$
 for all $x, y \in V$

Definition Second partial derivative

Let $U \subseteq \mathbb{R}^n$ be open, and $f: U \to \mathbb{R}$ differentiable. If the function $D_i f$ is itself differentiable, then its partial derivative with respect to the j-th variable $D_j(D_i f)$ is called a **second partial derivative** of f.

Proposition

Let $U \subseteq \mathbb{R}^n$ be open and let $\boldsymbol{f}: U \to \mathbb{R}^n$ be C^2 .

If $|D_k D_j f_i(x)| \leq c_{i,j,k}$ for any $x \in U$ and any triple indices $1 \leq i,j,k \leq n$, then

$$\text{for all } u,v \in U \quad |D\boldsymbol{f}(u) - D\boldsymbol{f}(v)| \leq \left(\sum_{1 \leq i,j,k \leq n} (c_{i,j,k})^2\right)^{\frac{1}{2}} |u - v|.$$

Theorem Kantorovich's theorem

Let $x_0 \in \mathbb{R}^n$, U an open neighborhood of x_0 in \mathbb{R}^n , and $f: U \to \mathbb{R}^n$ differentiable with its derivative $Df(x_0)$ invertible. Define

$$h_0 = -(Df(x_0))^{-1}f(x_0)$$
 $x_1 = x_0 + h_0$ $U_1 = B_{|h_0|}(x_1)$

If $\overline{U}_1 \subset U$ and the derivative D f(x) satisfies the Lipschitz condition:

$$|D m{f}(m{u}_1) - D m{f}(m{u}_2)| \leq M |m{u}_1 - m{u}_2|$$
 for all $m{u}_1, m{u}_2 \in \overline{U}_1$

and the following inequality is satisfied:

$$|f(x_0)||Df(x_0)^{-1}|^2M \le \frac{1}{2}$$

then the equation f(x) = 0 has a unique solution in the closed ball $\overline{U_1}$, and the Newton method converges to it with initial guess x_0 .

1.4 Inverse and implicit functions

Definition Strictly monotone function

A function is **strictly monotone** if either $x < y \implies f(x) < f(y)$ or $x < y \implies f(x) > f(y)$.

Theorem *Inverse function theorem* (\mathbb{R})

Let $f:[a,b]\to [c,d]$ be continuous with f(a)=c, f(b)=d and f strictly monotone on [a,b]. Then

1. There exists a unique continuous function $g:[c,d] \rightarrow [a,b]$ such that

$$f(g(y)) = y \ \forall y \in [c, d]$$
 $g(f(x)) = y \ \forall x \in [a, b]$

- 2. One can find g(y) by solving y f(x) = 0 for x using the bisection method.
- 3. If f is differentiable at $x \in (a,b)$ and $f'(x) \neq 0$, then g is differentiable at f(x) and $g(f'(x)) = \frac{1}{f'(x)}$

Theorem *Inverse function theorem* (\mathbb{R}^n)

If a mapping $\mathbb{R}^n \to \mathbb{R}^n$ is continuously differentiable, and its derivative is invertible at some point x_0 , then f is locally invertible, with differentiable inverse, in some neighborhood of $f(x_0)$.

Definition Implicit function

An **implicit function** is a function that is defined by an implicit relation of the form $f(x_1, \ldots, x_n) = 0$.

Theorem Implicit function theorem

Let $U \in \mathbb{R}^n$ be open and $c \in U$. Let $f: U \to \mathbb{R}^{n-k}$ be a C^1 -mapping such that f(c) = 0 and Df(c) is surjective. Then the system of linear equations (Df(c))(x) = 0 has n-k passive variables and k active variables, and there exists a neighborhood of c in which f = 0 implicitly defines the n-k passive variables as a function c0 of the c1 active variables. This function c2 is called an **implicit function**.

1.5 Manifolds

1.5.1 Smooth manifolds

Definition Graph

The graph $\Gamma(f)$ of a function $f: \mathbb{R}^k \to \mathbb{R}^{n-k}$ is the set of points $(x,y) \in \mathbb{R}^n$ such that f(x) = y.

Definition Smooth manifold

A subset $M \subset \mathbb{R}^n$ is a **smooth** k-dimensional manifold if locally it is the graph of a C^1 -mapping $f: \mathbb{R}^k \to \mathbb{R}^{n-k}$ By "locally" we mean that for all $x \in M$, there exists some neighborhood U such that $M \cap U$ is the graph of a mapping expressing n-k coordinates as a function of the other k.

If M is locally the graph of a C^k -mapping, we call it a C^k -manifold.

1-dimensional manifolds are called smooth curves and 2-dimensional manifolds are called smooth surfaces.

Theorem Embedded manifold theorem

Let $U \in \mathbb{R}^n$ be open and let $f: U \to \mathbb{R}^{n-k}$ be C^1 . Let $M \subset \mathbb{R}^n$ such that $M \cap U = \{ z \in U \mid f(z) = 0 \}$. If Df(z) is surjective for every $z \in M \cap U$, then $M \cap U$ is a **smooth** k-dimensional manifold embedded in \mathbb{R}^n If every $z \in M$ is in such a U, then M is a k-dimensional manifold.

Conversely, if M is a smooth k-dimensional manifold embedded in \mathbb{R}^n , then every $z \in M$ has a neighborhood $U \in \mathbb{R}^n$ such that there exists a C^1 -mapping $f: U \to \mathbb{R}^{n-k}$ with Df(z) surjective and $M \cap U = \{y \mid f(y) = 0\}$

We call $\{x \in U \mid f(x) = 0\}$ the **locus** of f.

Theorem

Let $M \subset \mathbb{R}^m$ be a k-dimensional manifold, U an open subset of \mathbb{R}^n ,

and $f: U \to \mathbb{R}^m$ a C^1 -mapping whose derivative is surjective at every point $x \in f^{-1}(M)$.

Then the inverse image $f^{-1}(M)$ is a submanifold of \mathbb{R}^n of dimension k+n-m.

Definition Parametrization

A parametrization of a k-dimensional manifold $M \subseteq \mathbb{R}^n$ is a mapping $\gamma: U \subseteq \mathbb{R}^k \to M$ satisfying the following conditions:

- 1. U is open
- 2. γ is C^1 and bijective
- 3. $D_{\gamma}(u)$ is surjective for all $u \in U$

1.5.2 Tangent spaces

Definition Tangent space

Let M be a k-dimensional manifold. The **tangent space** to M at $z_0 = (x_0, y_0)$, denoted by $T_{z_0}M$, is the graph of the linear transformation $Df(x_0)$.

^{*} The full versions of the inverse and implicit function theorem can be found in the slides of Lecture 3.

Theorem

Let $U\subseteq \mathbb{R}^n$ be open and $F:U\to \mathbb{R}^{n-k}$ a C^1 -mapping. If F(z)=0 describes a manifold M and $DF(z_0)$ is surjective for some $z_0\in M$, then the tangent space $T_{z_0}M$ is the kernel of $DF(z_0)$.

Proposition

Let $U\subseteq \mathbb{R}^k$ be open and let γ be a parametrization of a manifold M. Then $T_{\gamma(u)}M=\operatorname{im}(D_\gamma(u))$

1.5.3 Differentiable maps on manifolds

Definition Maps of class C^p on manifolds

Let $M \subseteq \mathbb{R}^n$ be an m-dimensional manifold, and $f: M \to \mathbb{R}^k$ a map. The map f is of class C^p if every $x \in M$ has a neighborhood $U \subseteq \mathbb{R}^n$ such that there exists a map $\widetilde{f}: U \to \mathbb{R}^k$ of class C^p with $f|U \cap M = \widetilde{f}|U \cap M$

Proposition

If $p \geq 1$ (with p and \widetilde{f} as in the definition above), then

$$Df(x): T_xM \to \mathbb{R}^k := D\widetilde{f}(x)|_{T_xM}$$

does not depend on the choice of \widetilde{f} .

Proposition

Let $M \subseteq \mathbb{R}^n$ be an n-dimensional manifold and $f: M \to \mathbb{R}^k$ be a C^1 -map. Let $P \subseteq M$ be the set where f = 0. If $Df(x): T_xM \to \mathbb{R}^k$ is onto at every $x \in P$, then P is an (m-k)-dimensional manifold.

Proposition Chain rule on manifolds

Let $M \subseteq \mathbb{R}^n$ be a manifold, let $U \subseteq \mathbb{R}^\ell$ be open, and let $f: M \to \mathbb{R}^k$ and $g: U \to M$ be C^1 maps. Then:

$$D(f \circ g)(x) = Df(g(x))Dg(x)$$
 for all $x \in U$

1.6 Taylor polynomials

1.6.1 Multiexponents and polynomials

Definition Multiexponent

- A multiexponent I is an ordered finite list of nonnegative integers $I=(i_1,\ldots,i_n)$
- \bullet The set of multiexponents with n entries is denoted by \mathcal{I}_n
- For any $I \in \mathcal{I}_n$, the **total degree** of I is $\deg I := \sum_{i=1}^n i_i$ and the **factorial** is $I! := i_1! \cdots i_n!$
- By \mathcal{I}_n^k we denote the set of multiexponents with n entries of total degree k.
- ullet For any $I\in \mathcal{I}_n$, $oldsymbol{x}^I:=\underline{x_1^{i_1}\cdots x_n^{i_n}}$ and $D_If:=D_1^{i_1}D_2^{i_2}\cdots D_n^{i_n}f$

General form of a degree m polynomial in n variables

$$p(\boldsymbol{x}) = \sum_{k=0}^{m} \sum_{I \in \mathcal{I}_n^k} a_I \boldsymbol{x}^I$$

Theorem Equality of crossed partials

Let $U \in \mathbb{R}^n$ be open and $f: U \to \mathbb{R}$ a function such that all of its partial derivatives $D_i f$ exist and are themselves differentiable at $a \in U$. Then for every pair of variables x_i, x_j , $D_i(D_i f)(a) = D_i(D_i f)(a)$

Corollary

If $f:U\to\mathbb{R}$ is a function all of whose partial derivatives up to order k are continuous, then the partial derivatives of order up to k do not depend on the order in which they are computed.

Proposition Coefficients in terms of partial derivatives

Let
$$p(x)=\sum\limits_{k=0}^{m}\sum\limits_{J\in\mathcal{I}_{n}^{k}}$$
 Then for any $I\in\mathcal{I}_{n}$, we have $a_{I}=\frac{D_{I}p(0)}{I!}$

1.6.2 Taylor polynomials

Theorem Taylor polynomials in 1 dimension

If $U \subseteq \mathbb{R}$ is an open subset and $f: U \to \mathbb{R}$ is k-times differentiable on U, then the polynomial

$$p_{f,a}^{k}(a+h) := f(a) + f'(a)h + \sum_{j=2}^{k} \frac{f^{(j)}(a)}{j!}h^{j}$$

is called the **Taylor polynomial** of degree k, and it is the best approximation of f at a:

$$\lim_{h \to 0} \frac{f(a+h) - p_{f,a}^k(a+h)}{h^k} = 0$$

Definition Taylor polynomials in higher dimension

Let $U \subseteq \mathbb{R}^n$ be open and let $f: U \to \mathbb{R}$ be a C^k function. Then the polynomial of degree k

$$P_{f,oldsymbol{a}}^k(oldsymbol{a}+oldsymbol{h}) = \sum_{m=0}^k \sum_{I \in \mathcal{I}^m} rac{1}{I!} D_I f(oldsymbol{a}) oldsymbol{h}^I$$

is called the **Taylor polynomial** of degree k of f at a.

If $f: U \to \mathbb{R}^n$ is a C^k function, then its Taylor polynomial is the polynomial map $U \to \mathbb{R}^n$ whose coordinates are the Taylor polynomials of the coordinate functions of f.

Theorem Uniqueness of the Taylor polynomial

Let $U \subseteq \mathbb{R}^n$ be open, $a \in U$ and $f: U \to \mathbb{R}$ a C^k function.

- 1. The $P_{f,a}^k(a+h)$ is the unique polynomial of degree k with the same partial derivative up to order k as f.
- 2. The polynomial $P_{f,a}^k(a+h)$ best approximates f near a in the sense:

$$\lim_{\boldsymbol{h}\to 0}\frac{f(\boldsymbol{a}+\boldsymbol{h})-P_{f,\boldsymbol{a}}^k(\boldsymbol{a}+\boldsymbol{h})}{|\boldsymbol{h}|^k}=0$$

Definition Little-oh

Let $U \subseteq \mathbb{R}^n$ be a neighborhood of 0, and let $f, h : U \setminus \{0\} \to \mathbb{R}$ be two functions with h > 0. We say that f is **little-oh** of h, denoted $f \in o(h)$, if:

$$\lim_{x \to 0} \frac{f(x)}{h(x)} = 0$$

Theorem Chain rule for Taylor polynomials

Let $U \subseteq \mathbb{R}^n$ be open and $g: U \to V$ and $f: V \to \mathbb{R}$ be of class C^k . Then $f \circ g$ is of class C^k , and if $g(\boldsymbol{a}) = \boldsymbol{b}$, the Taylor polynomial $P^k_{f \circ g, \boldsymbol{a}}(\boldsymbol{a} + \boldsymbol{h})$ is obtained by considering the polynomial

$$m{h}\mapsto P_{f,b}^k(P_{g,m{a}}^k(m{a}+m{h})$$

and discarding the terms of degree > k.

Theorem Taylor polynomial for implicit functions

Let F be a function of class C^k with $k \ge 1$ such that F(a,b) = 0.

Then, the implicit function is also C^k , and its degree k Taylor polynomial, $P_{q,b}^k:\mathbb{R}^m\to\mathbb{R}^n$ satisfies

$$P_{F,(a,b)}^{k}(P_{q,b}^{k}(b+h),b+h)=0$$

1.6.3 Quadratic forms

Definition Quadratic form

A quadratic form $Q: \mathbb{R}^n \to \mathbb{R}$ is a polynomial function in variables x_1, \dots, x_n all of whose terms are of degree 2. Alternatively, a n-variable quadratic form is a polynomial of the form

$$Q(oldsymbol{x}) = \sum_{I \in \mathcal{I}_n^2} a_I \cdot oldsymbol{x}^I ~~ a_I \in \mathbb{R}$$

Theorem

For any quadratic form $Q: \mathbb{R}^n \to \mathbb{R}$, there exist m = k + l linearly independent functions $\alpha_1, \dots, a_m: \mathbb{R}^n \to \mathbb{R}$ such that:

$$Q(\mathbf{x}) = (\alpha_1(\mathbf{x}) + \ldots + \alpha_k(\mathbf{x}))^2 - (\alpha_{k+1}(\mathbf{x}) + \ldots + \alpha_{k+l}(\mathbf{x}))$$

The number k of plus signs and the number l of minus signs are independent of the choice of α 's.

Definition

The **signature** of a quadratic form is the pair (k, l) (from the previous theorem)

Proposition

The following two sets are isomorphic:

$$\{\mathsf{Quadratic\ forms\ in\ } n\ \mathsf{variables}\} \cong \{A \in \mathbb{R}^{n \times n} : A^\top = A\}$$

Definition Equivalent quadratic forms

Two quadratic forms Q,Q' in n variables are called **equivalent** if there exists a nonsingular matrix $S \in \mathbb{R}^{n \times n}$ such that $Q'(\boldsymbol{x}) = Q(S\boldsymbol{x})$

Proposition

Suppose Q, Q' are quadratic forms with matrices A, A' respectively.

$$Q, Q'$$
 are equivalent by a matrix $S \iff A' = S^{\top}AS$

Definition Definite quadratic form

- A quadratic form Q is positive definite if Q(x) > 0 whenever $x \neq 0$, or alternatively if the signature is (n,0).
- A quadratic form Q is negative definite if Q(x) < 0 whenever $x \neq 0$, or alternatively if the signature is (0, n).

Proposition

Let Q be a quadratic form with signature (k, l).

- k is the largest dimension of a subspace on \mathbb{R}^n on which Q is positive definite.
- ullet l is the largest dimension of a subspace of \mathbb{R}^n on which Q is negative definite.
- The signature of Q is independent of its representation, i.e., is independent of coordinates.

Definition Rank and degeneracy

The **rank** of a quadratic form is the number of linearly independent squares in its representation as a sum of squares. A quadratic form on \mathbb{R}^n is **non-degenerate** if its rank is n. It is **degenerate** if its rank is less than n.

Proposition

Let $Q: \mathbb{R}^n \to \mathbb{R}$ be a positive definite quadratic form. Then there exists C > 0 such that $Q(x) \geq C|x|^2$.

1.6.4 Critical points

Definition Critical point and value

Let U be open and $f:U\to R$ differentiable.

A **critical point** of f is a point $u \in U$ where the derivative of f vanishes.

The value of f at the critical point is called a **critical value**.

Theorem

Let U be open and $f:U\to\mathbb{R}$ differentiable. If $x_0\in U$ is a local minimum or a local maximum, then $Df(x_0)=0$.

Definition Signature of a critical point

Let U be open and $f:U\to\mathbb{R}$ twice differentiable. Let x_0 be a critical point of f.

The **signature** of the critical point x_0 is the signature of the quadratic form

$$Q_{f,x_0}(h) := \sum_{I \in \mathcal{I}_n^2} \frac{D_I f(x_0)}{I!} h^I$$

Equivalently, if we define the **Hessian matrix** H(x) by $H_{ij}(x) = D_i D_j f(x)$, then

$$Q_{f,x_0}(h) = \frac{1}{2}(h^{\top}H(x_0)h)$$

Theorem Minima, maxima and saddles

Let U be open and $f:U\to\mathbb{R}$ of class C^2 . Let x_0 be a critical point of f.

- 1. If the signature of x_0 is (n,0), i.e. Q_{f,x_0} is positive definite, then x_0 is a **strict local minimum**.
- 2. If the signature of x_0 is (0,n), i.e. Q_{f,x_0} is negative definite, then x_0 is a **strict local maximum**.
- 3. If the signature of x_0 is (k,l) with k,l>0, then x_0 is neither a local minimum nor a local maximum. In this case we call x_0 a **saddle**. A saddle can be degenerate or non-degenerate.

2 Integration

2.1 Definitions

Definition Integration over a region

$$\int_A g(x) |\mathrm{d}^n x| = \int_{\mathbb{R}^n} g(x) \mathbf{1}_A |\mathrm{d}^n x|$$

Definition Support

The support $\operatorname{Supp}(f)$ of a function $f: \mathbb{R}^n \to \mathbb{R}$ is the closure of the set $\{x \in \mathbb{R}^n \mid f(x) \neq 0\}$ f(x) has bounded support if there exists R > 0 such that f(x) = 0 for some x > R.

Notation

$$M_A(f) = \sup_{x \in A} f(x)$$
 $m_A(f) = \inf_{x \in A} f(x)$

Definition Oscillation

The **oscillation** $osc_A(f)$ of f over A is $M_A(f) - m_A(f)$.

2.1.1 Dyadic cubes

Definition Dyadic cube and paving

A dyadic cube $C_{k,N}\subseteq\mathbb{R}^n$, where $k=(k_1,\ldots,k_n)$ is a vector of integers, is given by

$$C_{k,N} = \left\{ x \in \mathbb{R}^n \mid \frac{k_i}{2^N} < x_i < \frac{k_i + 1}{2^N}, 1 \le i \le n \right\}$$

The collection of all cubes $C_{k,N}$ at a single level N, denoted by $\mathcal{D}_N(\mathbb{R}^n)$, is the N-th **dyadic paving** of \mathbb{R}^n

Proposition Volume of a dyadic cube

The n-dimensional volume of a cube $C \in \mathcal{D}_n(\mathbb{R}^n)$ is $\operatorname{vol}_n C = \left(\frac{1}{2^N}\right)^n = \frac{1}{2^{Nn}}$

The distance between two points in the same cube is bounded by $rac{\sqrt{n}}{2^N}$

Definition Upper and lower sum

Let $f:\mathbb{R}^n \to \mathbb{R}$ be bounded with bounded support. The N-th **upper and lower sums** of a function f are

$$U_n(f) = \sum_{C \in \mathcal{D}_N} M_C(f) \operatorname{vol}_n C = \frac{1}{2^{Nn}} \sum_{C \in \mathcal{D}_N} M_C(f)$$

$$L_n(f) = \sum_{C \in \mathcal{D}_N} m_C(f) \operatorname{vol}_n C = \frac{1}{2^{Nn}} \sum_{C \in \mathcal{D}_N} m_C(f)$$

2.1.2 Integrable functions

Definition Upper and lower integrals

$$U(f) = \lim_{N \to \infty} U_N(f)$$
 $L(f) = \lim_{N \to \infty} L_N(f)$

Definition Integrable function

A function $f: \mathbb{R}^n \to \mathbb{R}$, bounded with bounded support, is **integrable** if U(f) = L(f). Its **integral** is then

$$\int_{\mathbb{D}^n} f|\,\mathrm{d}^n x| = U(f) = L(f)$$

2.2 Volume of sets

Definition *n*-dimensional volume

Let $A\subseteq\mathbb{R}^n$ be a bounded set. If $\mathbf{1}_A$ is integrable, then the n-dimensional volume of A is

$$\operatorname{vol}_n A := \int_{\mathbb{R}^n} |\operatorname{d}^n x| 1_A |\operatorname{d}^n x|$$

Riemann sum

Choose any $x_{k,N} \in C_{k,N}$. The **Riemann sum**

$$R(f,N) = \sum_{k \in \mathbb{Z}^n} \operatorname{vol}_n(C_{k,n}) f(x_{k,N})$$

converges to the integral as $N \to \infty$

2.2.1 Pavable sets

Definition Pavable set

A set is pavable if it has well-defined volume (the indicator function is integrable over the set)

Proposition

- The *n*-dimensional parallelogram (a product of intervals) has volume equal to the product of its side lengths.
- If two disjoint sets $A, B \in \mathbb{R}^n$ are pavable, then so is their union, and $\operatorname{vol}_n(A \cup B) = \operatorname{vol}_n(A) + \operatorname{vol}_n(B)$
- Let $A \subseteq \mathbb{R}^n$ be payable and $v \in \mathbb{R}^n$ a vector. Then the shift A + v is payable and has the same volume as A.
- If $A \subseteq \mathbb{R}^n$ has volume, and $t \in \mathbb{R}$, then tA has volume, and $\operatorname{vol}_n(tA) = |t|^n \operatorname{vol}_n(A)$

2.2.2 Volume zero and integrability conditions

Proposition

A bounded set $X\subseteq\mathbb{R}^n$ has volume 0 if and only if for every $\varepsilon>0$ there exists N such that

$$\sum_{\substack{C \in \mathcal{D}_N(\mathbb{R}^n) \\ C \cap X \neq 0}} \operatorname{vol}_n(C) \leq \varepsilon$$

Theorem

A function $f: \mathbb{R}^n \to \mathbb{R}$ is integrable if and only if:

- it is bounded with bounded support
- for all $\varepsilon > 0$ there exists N such that $\sum_{C \in A} \operatorname{vol}_v(C) < \varepsilon$ where $A = \{C \in \mathcal{D}_N(\mathbb{R}^n) \mid \operatorname{osc}_C(f) > \varepsilon\}$

Proposition

If $M \subseteq \mathbb{R}^n$ is a manifold of dimension k < n, then any compact subset $X \subseteq M$ satisfies $\operatorname{vol}_n(X) = 0$.

Theorem

Any continuous function $f: \mathbb{R}^n \to \mathbb{R}$ with bounded support is integrable.

Corollary

Let $X \subseteq \mathbb{R}^n$ be compact and let $f: X \to \mathbb{R}$ be continuous.

Then the graph of f has (n+1)-dimensional volume 0.

Let $U \subseteq \mathbb{R}^n$ be open and let $f: U \to \mathbb{R}$ be continuous.

Then any compact part Y of the graph of f has (n+1)-dimensional volume 0.

Theorem

A function $f: \mathbb{R}^n \to \mathbb{R}$, bounded with bounded support, is integrable if it is continuous except on a set of volume 0.

2.2.3 Measure zero

Definition Measure zero

A set $X \subseteq \mathbb{R}^n$ has **measure 0** if there exists an infinite sequence of open boxes:

$$B_i := \{ x \in \mathbb{R}^n \mid a_i < x_i < a_i + \delta \ (i = 1, ..., n) \}$$

such that:

$$X \subseteq \bigcup_{i \in \mathbb{N}} B_i$$
 and $\sum_{i \in \mathbb{N}} \operatorname{vol}_n(B_i) \le \varepsilon$

By "almost everywhere" we mean everywhere except on a set of measure zero.

Proposition

A set with volume 0 has measure 0. The converse is not necessarily true.

Theorem

A countable union of sets of measure 0 has measure 0.

Theorem

Let $f: \mathbb{R}^n \to \mathbb{R}$ be bounded with bounded support.

f is integrable \iff f is continuous except on a set of measure 0

2.3 Integration rules

Proposition Rules for computing integrals

Assume that $f,g:\mathbb{R}^n \to \mathbb{R}$ are integrable. The following right hand sides are integrable:

1.
$$\int_{\mathbb{R}^n} |(f+g)| |d^n x| = \int_{\mathbb{R}^n} f|d^n x| + \int_{\mathbb{R}^n} g|d^n x|$$

2.
$$\int_{\mathbb{R}^n} (af) |d^n x| = a \int_{\mathbb{R}^n} f |d^n x|$$

3. If
$$f \leq g$$
, then $\int_{\mathbb{R}^n} f|\mathrm{d}^n x| \leq \int_{\mathbb{R}^n} g|\mathrm{d}^n x|$

4.
$$\left| \int_{\mathbb{R}^n} f | d^n x | \right| \le \int_{\mathbb{R}^n} |f| | d^n x |$$

Proposition

Let $f_1(x)$ be integrable on \mathbb{R}^n and $f_2(y)$ be integrable on \mathbb{R}^m .

Then the function g(x,y) = f1(x)f2(y) on \mathbb{R}^{n+m} is integrable and

$$\int_{\mathbb{R}^{n+m}} g|\,\mathrm{d}^n x||\,\mathrm{d}^m y| = \left(\int_{\mathbb{R}^n} f_1|\,\mathrm{d}^n x|\right) \left(\int_{\mathbb{R}^m} f_2|\,\mathrm{d}^m y|\right)$$

2.3.1 Fubini's theorem

Theorem Fubini's theorem

Let $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ be an integrable function, and suppose that for each $x \in \mathbb{R}^n$, the function $y \mapsto f(x,y)$ is integrable. Then the function

$$x \mapsto \int_{\mathbb{R}^m} f(x,y) |\mathrm{d}^m y|$$

is integrable and

$$\int_{\mathbb{R}^{n+m}} f(x,y) |\operatorname{d}^n x| |\operatorname{d}^m y| = \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^m} r(x,y) |\operatorname{d}^m y| \right) |\operatorname{d}^n x|$$

2.4 Volume of k-dimensional objects

2.4.1 Volume of linear transformations

Definition Paralellogram and cube

Let v_1, \ldots, v_k be vectors in \mathbb{R}^n . The k-paralellogram spanned by v_1, \ldots, v_k is

$$P(v_1, \dots, v_k) := \{t_1v_1 + \dots + t_kv_k \mid 0 \le t_i \le 1\}$$

If the vectors v_1, \ldots, v_k are the standard basis vectors of \mathbb{R}^k , we call it a k-dimensional **unit cube**.

Lemma

1. Let ${\cal C}$ be a dyadic cube, ${\cal T}$ a linear transformation and ${\cal Q}$ a unit cube.

$$\operatorname{vol}_n T(C) = \operatorname{vol}_n T(Q) \operatorname{vol}_n C$$

2. Let $A \subseteq \mathbb{R}^n$ be a (pavable) set, T a linear transformation and Q a unit cube.

$$\operatorname{vol}_n T(A) = \operatorname{vol}_n T(Q) \operatorname{vol}_n A$$

3. Let Q be a unit cube and T a linear transformation.

$$\operatorname{vol}_n T(Q) = |\det T|$$

Theorem

Let T be a linear transformation and denote by [T] its associated matrix.

Then, for any pavable set $A \subseteq \mathbb{R}^n$, the image T(A) is pavable, and

$$\operatorname{vol}_n T(A) = |\det[T]| \operatorname{vol}_n A$$

Proposition

Let v_1, \ldots, v_n be vectors in \mathbb{R}^n . Then

$$\operatorname{vol}_n P(v_1, \dots, v_n) = \det[v_1 \dots v_n]$$

Theorem

Let $T:\mathbb{R}^n\to\mathbb{R}^n$ be an invertible linear transformation, and $f:\mathbb{R}^n\to\mathbb{R}$ integrable. Then $f\circ T$ is integrable, and

$$\int_{\mathbb{R}^n} f(y) |d^n y| = |\det T| \int_{\mathbb{R}^n} f(T(x)) |d^n x|$$

2.4.2 Change of coordinates

Theorem Change of coordinates

Let X be a compact subset of \mathbb{R}^n with boundary ∂X of volume 0. Let U be an open set containing X. Let $\phi:U\to\mathbb{R}^n$ be a C^1 -mapping such that:

- $\bullet \ \phi \text{ is injective on } X \setminus \partial X \\$
- ullet The derivative of ϕ is satisfies the Lipschitz condition
- $[D\phi(x)]$ is invertible at every $X \in X \setminus \partial X$.

Set $Y = \phi(X)$. Then, if $f: Y \to \mathbb{R}$ is integrable, $|\det[D\phi]|(f \circ \phi)$ is integrable on X and:

$$\int_{Y} f(y) |d^{n}y| = \int_{Y} |\det[D\phi(x)]| \cdot (f \circ \phi) |d^{n}x|$$

2.4.3 Volume of manifolds

Definition Volume of a paralellogram

Let $T = [v_1, \dots, v_k]$ be an $n \times k$ real matrix. Then the k-dimensional volume of $P(v_1, \dots, v_k)$ is

$$\operatorname{vol}_k P(v_1, \dots, v_k) := \sqrt{\det(T^\top T)}$$

This is also true if the parallelogram is **anchored** at $x \in \mathbb{R}^n$.

$$\operatorname{vol}_k P_x(v_1,\ldots,v_k) = \operatorname{vol}_k P(v_1,\ldots,v_k)$$

Definition *k*-dimensional volume 0

A bounded subset $X \subseteq \mathbb{R}^n$ has k-dimensional volume $\mathbf{0}$ if

$$\lim_{N \to \infty} \sum_{\substack{C \in \mathcal{D}_N(\mathbb{R}^n) \\ C \cap X \neq 0}} \left(\frac{1}{2^N}^k\right) = 0$$

An arbitrary subset $X \subseteq \mathbb{R}^n$ has k-dimensional volume 0 if

$$\operatorname{vol}_k(X \cap B_R(0)) = 0$$
 for all R

Proposition

Let m, k, n be integers satisfying $0 \le m < k \le n$.

If $M\subseteq\mathbb{R}^n$ is an m-dimensional manifold, then any closed subset $X\subset M$ has k-dimensional volume 0.

Definition Parametrization of a manifold

Let $M\subseteq\mathbb{R}^n$ be a k-dimensional manifold and let $U\subseteq\mathbb{R}^k$ be a subset with boundary of k-dimensional volume 0. Let $X\subseteq U$ be such that $U\setminus X$ is open. Then a continuous mapping $\gamma:U\to\mathbb{R}^n$ parametrizes M if:

- 1. $M \subseteq \gamma(U)$
- 2. $\gamma(U \setminus X) \subseteq M$
- 3. $\gamma: U \setminus X \to M$ is injective and C^1
- 4. the derivative $D\gamma(u)$ is injective for all $u \in U \setminus X$
- 5. X has k-dimensional volume 0
- 6. $\gamma(X) \cap C$ has k-dimensional volume 0 for every compact subset $C \subseteq M$

Theorem

All manifolds can be parametrized.

Definition Volume of a k-dimensional manifold

Let $M\subseteq\mathbb{R}^n$ be a smooth k-dimensional manifold, U a pavable subset of \mathbb{R}^k , and $\gamma:U\to M$ a parametrization. Let X be as in the definition of parametrization. Then

$$\operatorname{vol}_n M = \int_{\gamma(U \setminus X)} |\operatorname{d}^k x| = \int_{U \setminus X} \left(|\operatorname{d}^k x| \underbrace{\left(P_{\gamma(u)}(D_1 \gamma(u), \dots, D_k \gamma(u)) \right)}_{\text{Parallelogram anchored at } \gamma(u)} \right) |\operatorname{d}^k u|$$

$$= \int_{U \setminus X} \sqrt{\det([D\gamma(u)]^{\top}[D\gamma(u)])} \, |\, \mathrm{d}^k u|$$

Definition Integral with respect to volume

Let $M \subseteq \mathbb{R}^n$ be a smooth k-dimensional manifold, U a pavable subset of \mathbb{R}^k , and $\gamma: U \to M$ a parametrization. Then $f: M \to \mathbb{R}$ is **integrable over** M **with respect to volume** if the following integral exists:

$$\int_M f(x) |\operatorname{d}^k x| := \int_{U \backslash X} f(\gamma(u)) \sqrt{\det([D\gamma(u)]^\top [D\gamma(u)])} |\operatorname{d}^k u|$$

In particular, if $Y\subseteq M$ is a subset such that $\mathbf{1}_{\gamma^{-1}(Y)}$ is integrable, then

$$\operatorname{vol}_k Y = \int_{U \setminus X} \mathbf{1}_Y(\gamma(u)) \sqrt{\det([D\gamma(u)]^{\top}[D\gamma(u)])} |\operatorname{d}^k u|$$

Proposition

The integral (both its existence and its value)

$$\int_{U\setminus X} f(\gamma(u)) \sqrt{\det([D\gamma(u)]^{\top}[D\gamma(u)])} |d^k u|$$

as in the definition above is independent of the choice of parametrization.

3 Forms and orientation

3.1 Constant k-forms

3.1.1 Permutations

Definition Permutation

A **permutation** of a set S is a bijection $S \to S$ that re-orders its elements.

Definition Sign of a permutation

An **inversion** is a pair of elements (i, j) such that i < j and $\sigma(i) > \sigma(j)$.

The **sign** of a permutation is defined by:

$$sgn(\sigma) = (-1)^{N(\sigma)}$$

where $N(\sigma)$ is the number of inversions in the permutation.

Alternatively, the sign is 1 (even) if the permutation can be obtained by an even number of pairwise swaps, and the sign is -1 (odd) if the permutation can be obtained by an odd number of pairwise swaps.

3.1.2 Elementary constant *k*-forms

Definition Antisymmetric function

A function is $\phi: (\mathbb{R}^n)^k \to \mathbb{R}$ is **antisymmetric** if for any permutation σ of the indices $\{1, 2, \dots, k\}$:

$$\phi(v_1, v_2, \dots, v_k) = \operatorname{sgn}(\sigma) \cdot \phi(v_{\sigma(1)}, v_{\sigma(2)}, \dots, v_{\sigma(k)})$$

Swapping two arguments of an antisymmetric function changes the sign of the function.

Definition Multilinear function

A function $\phi: (\mathbb{R}^n)^k \to \mathbb{R}$ is **multilinear** if it is linear in all of its arguments:

$$\phi(av_1+bw_1,v_2,\ldots,v_k)=a\phi(v_1,v_2,\ldots,v_k)+b\phi(w_1,v_2,\ldots,v_k)\qquad\text{for all}\quad v_1,w_1,v_2,\ldots,v_k\in\mathbb{R}^n\quad a,b\in\mathbb{R}$$

Definition Constant k-form

A **constant** k-form on \mathbb{R}^n is a function $\phi: (\mathbb{R}^n)^k \to \mathbb{R}$ that takes k vectors and returns a number $\phi(v_1, \dots, v_k)$ such that ϕ is multilinear and antisymmetric as a function of the vectors.

The number k is called the **degree** of the form.

Definition *Elementary constant* k-form

An **elementary constant** k-**form** is an expression of the form:

$$dx_{i_1} \wedge dx_{i_2} \wedge \ldots \wedge dx_{i_k} \qquad (1 \le i_1 < \ldots < i_k \le n)$$

Evaluated on the vectors v_1, \ldots, v_k it gives the determinant of the $k \times k$ matrix obtained by selecting rows i_1, \ldots, i_k of the matrix $[v_1, \ldots, v_k]$. The only **elementary 0-form** is the form denoted 1, which maps the empty set to 1.

Definition Linear combinations of forms

Let ϕ and ψ be two k-forms, and a a scalar.

$$(\phi + \psi)(v_1, \dots, v_k) := \phi(v_1, \dots, v_k) + \psi(v_1, \dots, v_k)$$

 $(a\phi)(v_1, \dots, v_k) := a(\phi(v_1, \dots, v_k))$

The **space of constant** k-**forms** is a vector space, denoted by $A_c^k(\mathbb{R}^n)$.

Theorem

The elementary constant k-forms form a basis of $A_c^k(\mathbb{R}^n)$.

Theorem

The space $A_c^k(\mathbb{R}^n)$ has dimension $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

Definition Wedge product

The wedge product of the forms $\phi \in A_n^k(\mathbb{R}^n)$ and $\psi \in A_c^\ell(\mathbb{R}^n)$ is the element $\phi \wedge \psi \in A^{k+\ell}(\mathbb{R}^n)$ defined by

$$(\phi \wedge \psi)(v_1, v_2, \dots, v_{k+\ell}) := \sum_{\sigma \in \text{Perm}(k,\ell)} \text{sgn}(\sigma) \phi(v_{\sigma(1)}, \dots, v_{\sigma(k)}) \psi(v_{\sigma(k+1)}, \dots, v_{\sigma(k+\ell)})$$

where $\operatorname{Perm}(k,\ell)$ is the set of permutations σ of the numbers $1,2,\dots,k+\ell$ such that

$$\sigma(1) < \sigma(2) < \ldots < \sigma(k)$$
 $\sigma(k+1) < \sigma(k+2) < \ldots < \sigma(k+\ell)$

Proposition Properties of the wedge product

- 1. (Distributivity) $\phi \wedge (\psi_1 + \psi_2) = \phi \wedge \psi_1 + \phi \wedge \psi_2$
- 2. (Associativity) $(\phi_1 \wedge \phi_2) \wedge \phi_3 = \phi_1 \wedge (\phi_2 \wedge \phi_3)$
- 3. (Skew commutativity) If ψ is a k-form and ϕ is an ℓ -form, then $\psi \wedge \phi = (-1)^{kl} \phi \wedge \psi$

3.2 Differential forms

Definition *k*-form field

A k-form field (or differential form) on an open subset $U \subseteq \mathbb{R}^n$ is a map $\phi: U \to A_c^k(\mathbb{R}^n)$. The space of k-form fields is denoted by $A^k(U)$.

Differential forms

A differential form is a function that maps k-dimensional parallelograms anchored at points in U and returns numbers given by

$$\phi(P_x(v_1,\ldots,v_k)) := \phi(x)(v_1,\ldots,v_k)$$

where $\phi(x)$ is of the form

$$\phi(x) = \sum_{1 \le i_1 < \dots < i_k \le n} a_{i_1 \dots i_k}(x) \, \mathrm{d}x_{i_1} \wedge \dots \wedge \mathrm{d}x_{i_k}$$

and $a_{i_1...,i_k}$ are real-valued functions of $x \in U$.

We say a differential form is of class C^p if $a_{i_1...,i_k}$ are of class C^p .

3.2.1 Integrals of differential forms over parametrized domains

Definition Parametrized domain

Let $U \subseteq \mathbb{R}^k$ be a bounded open set, with boundary of k-dimensional volume 0.

A C^1 -mapping $\gamma:U\to\mathbb{R}^n$ defines a **domain in** \mathbb{R}^n parametrized by U. We denote the pair (U,γ) by $[\gamma(U)]$.

Definition Integral of a differential form over a parametrized domain

Let $U \subseteq \mathbb{R}^k$ be a bounded open set with boundary of k-dimensional volume 0.

Let $V \subseteq \mathbb{R}^n$ be open and let $[\gamma(U)]$ be a parametrized domain in V. Let φ be a k-form field on V.

Then the integral of φ over $[\gamma(U)]$ is

$$\int_{\gamma(U)} \varphi := \int_{U} \varphi \left(P_{\gamma(u)}(D_1 \gamma(\mathbf{u}), \dots, D_k \gamma(\mathbf{u})) \right) \left| d^k \mathbf{u} \right|$$

3.3 Orientation of manifolds

Definition Orientation of a vector space

Let V be a finite-dimensional real vector space, and let \mathcal{B}_V be the set of bases of V. An **orientation** of V is a map $\Omega: \mathcal{B}_V \to \{+1, -1\}$ such that if $\{v\}$ and $\{w\}$ are two bases with change of basis matrix $[P_{w \to v}]$, then

$$\Omega(\{w\}) = \operatorname{sgn}(\det[P_{w\to v}])\Omega(\{v\})$$

A basis $\{u\} \in \mathcal{B}_V$ is called **direct** if $\Omega(\{w\}) = +1$, and **indirect** if $\Omega(\{w\}) = -1$

To orient V, we choose a basis of V and declare it to be direct.

The orientation for which $\{v\}$ is direct is denoted $\Omega^{\{v\}}$ and is called the **orientation specified by** $\{v\}$.

The **standard orientation** on \mathbb{R}^n , denoted Ω^{st} , is defined by declaring the standard basis to be direct.

Subspaces of \mathbb{R}^n do not necessarily have a standard orientation.

Definition Orientation of a manifold

Let $M \subseteq \mathbb{R}^n$ be a k-dimensional manifold. Define:

$$\mathcal{B}(M) := \{(\boldsymbol{x}, \boldsymbol{v}_1, \dots, \boldsymbol{v}_k) \in \mathbb{R}^n \times (\mathbb{R}^n)^k\}$$

where $x \in M$ and v_1, \dots, v_k is a basis of the tangent space T_xM .

Let $\mathcal{B}_x(M) \subseteq \mathcal{B}(M)$ be the subset where the first coordinate is x, that is $\mathcal{B}_x(M) = \{x\} \times \mathcal{B}_{T_xM}$.

An orientation of a manifold $M\subseteq\mathbb{R}^n$ is a continuous map $\Omega:\mathcal{B}(M)\to\{+1,-1\}$

whose restriction Ω_x to each $\mathcal{B}_x(M)$ is an orientation of T_xM .

Examples of orientations

- To orient a discrete set of points (a 0-dimensional manifold on \mathbb{R}^n) we simply assign +1 or -1 to each point.
- An n-dimensional open subset U of \mathbb{R}^n carries the standard orientation of \mathbb{R}^n .
- Let $C \subset \mathbb{R}^n$ be a smooth curve (a 1-dimensional manifold in \mathbb{R}^n). Let f be a non-vanishing tangent vector field that varies continuously with x, i.e. a continuous map $f: x \mapsto f(x) \in T_xM$. Then for every basis v of T_xC , f defines an orientation of C by the formula

$$\Omega_x^f(x,v) := \operatorname{sgn}(f(x) \cdot v)$$

Orientation by transverse vector field

Let $S \subseteq \mathbb{R}^3$ be a smooth surface and let $n: S \to \mathbb{R}^3$ be a continuous **transverse vector field** n on S, that is a vector field defined at every $x \in S$ such that $n(x) \neq 0$ and $n(x) \notin T_x S$.

Then, one can define an **orientation by transverse vector field** n, denoted Ω^n , of S by

$$\Omega^n(v_1, v_2) := \operatorname{sgn}(\det[n(x), v_1, v_2])$$

for all $x \in S$ and all bases v_1, v_2 of T_xS .

Proposition

Let $U \subseteq \mathbb{R}^n$ be open and let $f: U \to \mathbb{R}^{n-k}$ be a C^1 map such that Df(x) is surjective at all $x \in M := f^{-1}(x)$. Then the map

$$\Omega(v_1,\ldots,v_n) := \operatorname{sgn} \det[\nabla f_1(x),\ldots,\nabla f_{n-k},v_1,\ldots,v_k]$$

is an orientation of M.

Definition Orienting-preserving linear transformation

Let V be a k-dimensional vector space oriented by $\Omega: \mathcal{B}(V) \to \{+1, -1\}$.

A linear transformation $T: \mathbb{R}^k \to V$ is:

- orientation-preserving if $\Omega(T(e_1),\ldots,T(e_k))=+1$
- orientation-reversing if $\Omega(T(e_1),\ldots,T(e_k))=-1$

Definition Orientation-preserving parametrization of a manifold

Let $M \subseteq \mathbb{R}^m$ be a k-dimensional manifold oriented by Ω , and let $U \subseteq \mathbb{R}^k$ be a subset with boundary of k-dimensional volume 0. Let $\gamma: U \to \mathbb{R}^m$ parametrize M, with the set X as in the definition of parametrization.

Then γ is **orientation-preserving** if:

$$\Omega(D_1\gamma(u),\ldots,D_k\gamma(u))=+1$$
 for all $u\in U\setminus X$

Proposition

Let M be an oriented manifold, and $\gamma:U\to M$ a parametrization of an open subset of M, with $U\setminus X$ connected. Then if γ preserves orientation at a single point of U, it preserves orientation at every point of U.

Theorem

Let $M \subseteq \mathbb{R}^n$ be a k-dimensional manifold, let U_1, U_2 be open subsets of \mathbb{R}^k , and let $\gamma_1 : U_1 \to \mathbb{R}^n$ and $\gamma_2 : U_2 \to \mathbb{R}^n$ be two orientation-preserving parametrizations of M. Then for any k-form φ defined on a neighborhood of M,

$$\int_{[\gamma_1(U_1)]} \varphi = \int_{[\gamma_2(U_1)]} \varphi$$

Definition

Let $M \subseteq \mathbb{R}^n$ be a k-dimensional oriented manifold, φ a k-form field on a neighborhood of M, and $\gamma: U \to M$ any orientation-preserving parametrization of M. Then

$$\int_{M} \phi = \int_{[\gamma(U)]} \phi = \int_{U} \varphi \left(P_{\gamma(u)}(D_{1}\gamma(u), \dots, D_{k}\gamma(u)) \right) |d^{k}u|$$

3.4 Forms on \mathbb{R}^3

0-forms

A 0-form is simply a number and a 0-form field is simply a function.

The rule $f(P_x) = f(x)$ makes a function $f: U \to \mathbb{R}$ into a 0-form field.

Definition 1-forms and the work form of a vector field

The work form $W_{\vec{F}}$ of a vector field \vec{F} is the 1-form field defined by:

$$W_{\vec{F}}(P_x(v)) := \vec{F}(x) \cdot v = F_1 \, \mathrm{d}x_1 + \ldots + F_n \, \mathrm{d}x_n$$

Definition 2-forms and the flux form of a vector field

The **flux form** $\Phi_{\vec{F}}$ of a vector field \vec{F} is the 2-form field defined by:

$$\Phi_{\vec{F}}(P_x(v,w)) := \det[\vec{F}(x), v, w] = F_1 \, \mathrm{d}y \wedge \mathrm{d}z - F_2 \, \mathrm{d}x \wedge \mathrm{d}z + F_3 \, \mathrm{d}x \wedge \mathrm{d}y$$

Definition 3-forms and the mass form of a function

Let U be a subset of \mathbb{R}^3 and $f:U\to\mathbb{R}$ a function. The mass form M_f is the 3-form defined by

$$M_f\left(P_x(v_1,v_2,v_3)\right) := f(x) \underbrace{\det[v_1,v_2,v_3]}_{\text{signed volume of }P}$$

Integrals of work, flux and mass forms

The **work** of a vector field \vec{F} along an oriented curve C is $\int_C W_{\vec{F}} = \int_a^b \vec{F}(\gamma(u)) \cdot \gamma'(u) \, \mathrm{d}u$

The **flux** of a vector field \vec{F} along an oriented surface S is $\int_S \Phi_{\vec{F}} = \int_U \det \left[\vec{F}(\gamma(u)), D_1 \gamma(u), D_2 \gamma(u) \right] \left| \mathrm{d}^2 u \right|$

The integral of a mass form M_f over V, simply called the integral of f, is $\int_V M_f = \int_U f(\gamma(u)) \det[D\gamma(u)] |\mathrm{d}^3 u|$ In all three cases, we assume γ is an orientation-preserving parametrization.

3.5 Boundary of manifolds

Definition Boundary of a subset

Let $M \subseteq \mathbb{R}^n$ be a k-dimensional manifold, and $X \subset M$ a subset. The **boundary** of X in M, denoted by $\partial_M X$, is the set of points $x \in M$ such that every neighborhood of x contains points of X and points of X.

Definition Smooth boundary

Let $M \subseteq \mathbb{R}^n$ be a k-dimensional manifold and $X \subset M$ a subset. A point $x \in \partial_M X$ is a **smooth point** of the boundary of X if there exists a neighborhood $V \subset \mathbb{R}^n$ of x and a single C^1 function $g: V \cap M \to \mathbb{R}$ such that:

- 1. g(x) = 0
- 2. $X \cap V = \{a \in V \cap M \mid g(a) \ge 0\}$
- 3. $[Dg(x)]: T_xM \to \mathbb{R}$ is surjective.

The set of smooth points of the boundary of X is the **smooth boundary** of X, denoted $\partial_M^s X$.

The **non-smooth boundary** of X is the part of the boundary of X that is not smooth.

Proposition

The smooth boundary $\partial_M^s X$ is a (k-1)-dimensional manifold.

Definition Corner points

Let $M\subseteq\mathbb{R}^n$ be a k-dimensional manifold and $X\subset M$ a subset. A point $x\in X$ is a **corner point** of **codimension** m if there exists a neighborhood $V\subset\mathbb{R}^n$ of x and a C^1 function $g:V\cap M\to\mathbb{R}^m$ such that

- 1. g(x) = 0
- 2. $X \cap V = \{a \in V \cap M \mid g(a) \ge 0\}$
- 3. [Dg(x)] is surjective.

Definition Pieces of manifolds

A **piece-with-boundary** of a k-dimensional manifold M is a compact subset $X \subset M$ such that

- 1. The set of non-smooth points in $\partial_M X$ has (k-1)-dimensional volume 0.
- 2. The smooth boundary has finite (k-1)-dimensional volume.

If every point of the boundary $\partial_M X$ is a corner point, then X is a **piece-with-corners**.

Theorem

If $X \subset M$ is a k-dimensional piece-with-boundary, then X has finite k-dimensional volume.

3.5.1 Boundary orientation

Definition Inward and outward pointing tangent vector

Let $M \subseteq \mathbb{R}^n$ be a manifold, $X \subset M$ a piece-with-boundary, x a smooth point in $\partial_M X$, and g the function defining x as a smooth point. Let v be tangent to M at x. Then:

- v points outward from X if [Dg(x)]v < 0
- v points inward from X if [Dq(x)]v > 0

Definition Orientation of a boundary

Let M be a k-dimensional manifold oriented by Ω , and P a piece-with-boundary of M.

Let x be a point of the smooth boundary $\partial_M^s P$ and let $v_{\mathsf{out}} \in T_x M$ be an outward pointing vector.

Then the function:

$$\Omega^{\partial}: \mathcal{B}(T_{\tau}\partial P) \to \{+1, -1\}$$
 $\Omega^{\partial}_{\tau}(v_1, \dots, v_{k-1}) := \Omega_{\tau}(v_{\text{out}}, v_1, \dots, v_{k-1})$

defines an orientation on the smooth boundary $\partial_M^s P$.

Proposition Oriented boundary of a parallelogram

Let the k-parallelogram $P_x(v_1,\ldots,v_k)$ have the standard orientation.

Then its oriented boundary is given by the following, where a hat over a term indicates that it is omitted:

$$\partial P_x(v_1, \dots, v_k) = \sum_{i=1}^k (-1)^{i-1} \left(P_{x+v_i}(v_1, \dots, \hat{v}_i, \dots, v_k) - P_x(v_1, \dots, \hat{v}_i, \dots, v_k) \right)$$

4 Exterior derivatives

Definition Exterior derivative

Let $U \subseteq \mathbb{R}^n$ be an open subset. The **exterior derivative** $\mathbf{d}: A^k(U) \to A^{k+1}(U)$ is defined by the formula

$$\mathbf{d}\varphi(P_x(v_1,\ldots,v_{k+1})) := \lim_{h\to 0} \frac{1}{h^{k+1}} \int_{\partial P_x(hv_1,\ldots,hv_{k+1})} \varphi$$

Theorem Properties of exterior derivatives

Let φ be a k-form of class C^2 on an open subset $U \subseteq \mathbb{R}^n$:

$$\varphi = \sum_{i \le i_1 < \dots < i_k \le n} a_{i_1, \dots, i_k} \, \mathrm{d} x_{i_1} \wedge \dots \wedge \mathrm{d} x_{i_k}$$

- 1. The limit $\lim_{h\to 0} \frac{1}{h^{k+1}} \int_{\partial P_x(hv_1,\dots,hv_{k+1})} \varphi$ exists and defines a (k+1)-form.
- 2. The exterior derivative is linear over \mathbb{R} : if φ and ψ are k-forms on $U \subseteq \mathbb{R}^n$ and a, b are numbers, then

$$\mathbf{d}(a\varphi + b\psi) = a\,\mathbf{d}\varphi + b\,\mathbf{d}\psi$$

- 3. The exterior derivative of a constant form is 0.
- 4. The exterior derivative of the 0-form f is given by $\mathbf{d}f = [Df] = \sum_{i=1}^{n} (D_i f) \, \mathrm{d}x_i$
- 5. If $f:U\to\mathbb{R}$ is a C^2 function, then

$$\mathbf{d}(f \, \mathrm{d} x_{i_1} \wedge \ldots \wedge \mathrm{d} x_{i_k}) = \, \mathbf{d} f \wedge \mathrm{d} x_{i_1} \wedge \ldots \wedge \mathrm{d} x_{i_k}$$

6. $d(d(\varphi)) = 0$

Theorem

If φ is a k-form and ψ is an $\ell\text{-form},$ then

$$\mathbf{d}(\varphi \wedge \psi) = \mathbf{d}\varphi \wedge \psi + (-1)^k \varphi \wedge \mathbf{d}\psi$$

4.1 Gradient, curl and divergence

Definition Gradient, curl and divergence

Let $U\subseteq\mathbb{R}^3$ be an open set, $f:U\to\mathbb{R}$ a C^1 function, and $\vec{F}=\begin{bmatrix}F_1\\F_2\\F_3\end{bmatrix}$ a C^1 vector field on U.

$$\operatorname{grad} f = \nabla f = \begin{bmatrix} D_1 \\ D_2 \\ D_3 \end{bmatrix} f = \begin{bmatrix} D_1 f \\ D_2 f \\ D_3 f \end{bmatrix}$$

$$\operatorname{curl} \vec{F} = \nabla \times \vec{F} = \begin{bmatrix} D_1 \\ D_2 \\ D_3 \end{bmatrix} \times \begin{bmatrix} F_1 \\ F_2 \\ F_3 \end{bmatrix} = \begin{bmatrix} D_2 F_3 - F_3 F_2 \\ D_3 F_1 - D_1 F_3 \\ D_1 F_2 - D_2 F_1 \end{bmatrix}$$

$$\operatorname{div} \vec{F} = \nabla \cdot \vec{F} = \begin{bmatrix} D_1 \\ D_2 \\ D_3 \end{bmatrix} \cdot \begin{bmatrix} F_1 \\ F_2 \\ F_3 \end{bmatrix} = D_1 F_1 + D_2 F_2 + D_3 F_3$$

Theorem

Let f be a function on \mathbb{R}^3 and let \vec{F} be a vector field

$$\mathbf{d}f = W_{\operatorname{grad} f} \qquad \quad \mathbf{d}W_{\vec{F}} = \phi_{\operatorname{curl} \vec{F}} \qquad \quad \mathbf{d}\Phi_{\vec{F}} = M_{\operatorname{div} \vec{F}}$$

Definition Laplacian

In \mathbb{R}^3 , the Laplacian of a function f, denoted Δf is

$$\Delta f := (D_1^2 + D_2^2 + D_3^2)(f) = \begin{bmatrix} D_1 \\ D_2 \\ D_3 \end{bmatrix} \cdot \begin{bmatrix} D_1 f \\ D_2 f \\ D_3 f \end{bmatrix} = \text{div grad } f$$

4.2 Pullback

Definition Pullback by a linear transformation

Let V,W be vector spaces, $T:V\to W$ a linear transformation, and φ a constant k-form on W.

The **pullback** by
$$T$$
 is the mapping $T^*:A^k_c(W)\to A^k_c(V)$ defined by

The k-form $T^*\varphi$ is called the pullback of φ by T.

Proposition Computing the pullback by a linear transformation

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation.

Denote by x_1, \ldots, x_n the coordinates in \mathbb{R}^n and by y_1, \ldots, y_m the coordinates in \mathbb{R}^m . Then

$$T^*(dy_{j_1} \wedge \cdots \wedge dy_{j_k}) = \sum_{1 \leq j_1 < \cdots < j_k \leq n} b_{j_1, \dots, j_k} dx_{j_1} \wedge \cdots \wedge dx_{j_k}$$

 $T^*\varphi(v_1,\ldots,v_k) := \varphi(T(v_1),\ldots,T(v_k))$

where $b_{j_1,...,j_k}$ is the number obtained by taking the matrix of T, selecting its rows $i_1,...,i_k$, selecting its columns $j_1,...,j_k$, and taking the determinant of the resulting matrix.

Definition Pullback by a C^1 mapping

If φ is a k-form field on Y, and $f:X\to Y$ is a C^1 mapping, then $f^*:A^k(Y)\to A^k(X)$ is defined by

$$(f^*\varphi)(P_x(v_1,\ldots,v_k)) := \varphi(P_{f(x)}([Df(x)]v_1,\ldots,[Df(x)]v_k))$$

Proposition Pullbacks by composition

If $X \subseteq \mathbb{R}^n, Y \subseteq \mathbb{R}^m$ and $Z \subseteq \mathbb{R}^p$ are open, and φ is a k-form on Z, then

$$(g \circ f)^* \varphi = f^* g^* \varphi$$

which is a k-form on X.

4.2.1 Independence of coordinates

Proposition

Let $X\subseteq \mathbb{R}^n$ and $Y\subseteq \mathbb{R}^m$ be open, $f:X\to Y$ a C^1 map, and φ and ψ respectively a k-form and ℓ -form on Y. Then

$$f^*\varphi \wedge f^*\psi = f^*(\varphi \wedge \psi) \qquad \mathbf{d}f^*\phi$$

Theorem

Let $X \subseteq \mathbb{R}^n$ and $Y \subseteq \mathbb{R}^m$ be open, $f: X \to Y$ a C^1 map, and ϕ a k-form field on Y. Then

$$\mathbf{d}f^*\phi = f^*\,\mathbf{d}\phi$$

4.3 Stokes' theorem

Theorem Stokes' theorem

Let X be a piece-with-boundary of a k-dimensional oriented smooth manifold M in \mathbb{R}^n .

Give the boundary ∂X of X the boundary orientation, and let ϕ be a (k-1)-form of class C^2 defined on an open set containing X. Then

$$\int_{\partial X} \phi = \int_{X} \mathbf{d}\phi$$

Note: ∂X is the smooth boundary of X on M.

4.3.1 Applications of Stokes' theorem

Theorem Fundamental theorem of calculus

If f is a C^1 function on a neighborhood of [a,b], then

$$\int_{a}^{b} f'(t) dt = f(b) - f(a)$$

Theorem *Green's theorem*

Let S be a bounded region of \mathbb{R}^2 , bounded by a curve C (or curves C_i), carrying a compatible boundary orientation. Let \vec{F} be a vector field defined on a neighborhood of S. Then

$$\int_S \, \mathbf{d} W_{\vec{F}} = \int_C W_{\vec{F}} \qquad \text{or} \qquad \int_S \, \mathbf{d} W_{\vec{F}} = \sum_i \int_{C_i} W_{\vec{F}}$$

If $ec{F} = egin{bmatrix} f \\ g \end{bmatrix}$, then Green's theorem is traditionally written as

$$\int_{S} (D_1 g - D_2 f) \, \mathrm{d}x \, \mathrm{d}y = \int_{C} f \, \mathrm{d}x + g \, \mathrm{d}y$$

Theorem *Stokes'* theorem in \mathbb{R}^3

Let S be an oriented surface in \mathbb{R}^3 , bounded by a curve C that is given the boundary orientation. Let ϕ be a 1-form field defined on a neighborhood of S. Then

$$\int_{S} \mathbf{d}\phi = \int_{C} \phi$$

Suppose C is the union of disjoint simple closed curves C_i . Let \vec{N} be the normal unit vector field defining the orientation of S, and \vec{T} the unit tangent vector field defining the orientation of the C_i . Then

$$\iint_{S} (\operatorname{curl} \vec{F}(x)) \cdot \vec{N}(x) \, |\mathrm{d}^{2}x| = \sum_{i} \int_{C_{i}} \vec{F}(x) \cdot \vec{T}(x) \, |\mathrm{d}^{1}x|$$

Theorem Divergence theorem

Let X be a bounded domain in \mathbb{R}^3 with the standard orientation of space, and let its boundary ∂X be a union of surfaces S_i , each oriented by the outward normal. Let ϕ be a 2-form field defined on a neighborhood of X. Then

$$\int_X \mathbf{d}\phi = \sum_i \int_{S_i} \phi$$

Let $\phi=\Phi_{\vec{F}}$ and let \vec{N} be the unit outward-pointing vector field on the S_i . Then the above equation can be rewritten

$$\int_X M_{\operatorname{div} \vec{F}} = \iiint_X \operatorname{div} \vec{F} \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z = \sum_i \iint_{S_i} \vec{F} \cdot \vec{N} |\operatorname{d}^2 x|$$

4.3.2 Poincaré lemma

Definition Closed and exact forms

A k-form is **closed** if its exterior derivative is 0. A k-form ϕ is **exact** if there is a (k-1)-form ω such that $\phi=\mathbf{d}\omega$.

Lemma Poincaré lemma

Let B be an open ball in \mathbb{R}^n . Then any smooth closed k-form ϕ defined on B is exact, for $1 \leq k \leq n$.

Index

_	
C^k -manifold, 6	exact, 25
k-dimensional volume 0, 15	exterior derivative, 21
k-form field, 18	
n-dimensional volume, 12	factorial, 7
,	flux, 20
active variables, 6	flux form, 20
almost everywhere, 13	Fubini's theorem, 14
anchored, 15	Fundamental theorem of calculus, 24
antisymmetric, 17	
Associativity, 17	graph, 6
Associativity, 17	Green's theorem, 24
boundary, 20	
bounded support, 11	Hessian matrix, 10
bounded support, 11	,
Chain rule, 4	implicit function, 6
Chain rule for Taylor polynomials, 8	Implicit function theorem, 6
Chain rule on manifolds, 7	indirect, 18
	integrable, 11
change of basis formula, 2	integrable over M with respect to volume, 16
change of basis matrix, 2	integral, 11
Change of coordinates, 15	Integral of a differential form over a parametrized
class C^p , 3, 7	domain, 18
closed, 25	Integral with respect to volume, 16
codimension, 21	Inverse function theorem (\mathbb{R}) , 5
Coefficients in terms of partial derivatives, 8	` '
Computing the pullback by a linear transformation,	Inverse function theorem (\mathbb{R}^n) , 6
23	inversion, 16
constant k -form, 17	Jacobian matrix, 3
corner point, 21	Jacobian matrix, 5
critical point, 10	Kantorovich's theorem, 5
critical value, 10	Nantorovich's theorem, 5
	Linear combinations of forms, 17
degenerate, 9	linear transformation, 2
degree, 17	Lipschitz condition, 5
derivative, 3	Lipschitz ratio, 5
differentiable, 3	•
differential form, 18	little-oh, 8
dimension, 2	locus, 6
direct, 18	mass form, 20
directional derivative, 3	
Distributivity, 17	Mean value theorem, 4
Divergence theorem, 24	measure 0, 13
dyadic cube, 11	Minima, maxima and saddles, 10
· ·	multiexponent, 7
dyadic paving, 11	multilinear, 17
elementary 0-form, 17	Newton method 4
elementary constant k -form, 17	Newton method, 4
Embedded manifold theorem, 6	non-degenerate, 9
Equality of crossed partials, 7	non-smooth boundary, 20
equivalent, 9	odd, 16
•	
even, 16	orientation, 18

orientation by transverse vector field, 19 signature, 9, 10 orientation of a manifold, 18 Skew commutativity, 17 orientation specified by, 18 smooth k-dimensional manifold, 6 orientation-preserving, 19 smooth k-dimensional manifold embedded in \mathbb{R}^n , 6 Orientation-preserving parametrization of a manifold, smooth boundary, 20 smooth curves, 6 orientation-reversing, 19 smooth point, 20 Oriented boundary of a parallelogram, 21 smooth surfaces, 6 Orienting-preserving linear transformation, 19 space of k-form fields, 18 oscillation, 11 space of constant k-forms, 17 standard orientation, 18 paralellogram, 14 Stokes' theorem, 24 parametrization, 6 Stokes' theorem in \mathbb{R}^3 , 24 Parametrization of a manifold, 15 strict local maximum, 10 Parametrized domain, 18 strict local minimum, 10 partial derivative, 3 strictly monotone, 5 passive variables, 6 support, 11 pavable, 12 permutation, 16 tangent space, 6 piece-with-boundary, 21 Taylor polynomial, 8 piece-with-corners, 21 Taylor polynomial for implicit functions, 9 Poincaré lemma, 25 Taylor polynomials in 1 dimension, 8 points inward, 21 total degree, 7 points outward, 21 transverse vector field, 19 Properties of exterior derivatives, 22 Properties of the wedge product, 17 Uniqueness of the Taylor polynomial, 8 pullback, 23 unit cube, 14 Pullbacks by composition, 23 upper and lower sums, 11 quadratic form, 9 vector space, 2 Volume of a k-dimensional manifold, 16 rank, 9 Volume of a dvadic cube. 11 Riemann sum, 12 Volume of a paralellogram, 15 Rules for computing integrals, 13 wedge product, 17 saddle, 10 second partial derivative, 5 work, 20 work form, 20 sign, 16